Search

Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae - Nature.com

kmatabunga.blogspot.com
  • 1.

    Wanajo, S., Janka, H.-T. & Kubono, S. Uncertainties in the νp-process: supernova dynamics versus nuclear physics. Astrophys. J. 729, 46 (2011).

    ADS  Article  Google Scholar 

  • 2.

    Nishimura, N. et al. Uncertainties in νp-process nucleosynthesis from Monte Carlo variation of reaction rates. Mon. Not. R. Astron. Soc. 489, 1379–1396 (2019).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Fröhlich, C. et al. Neutrino-induced nucleosynthesis of A > 64 nuclei: the νp process. Phys. Rev. Lett. 96, 142502 (2006).

    ADS  Article  Google Scholar 

  • 4.

    Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H. T. & Buras, R. Nucleosynthesis in early supernova winds. II. The role of neutrinos. Astrophys. J. 644, 1028–1039 (2006).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Wanajo, S. The rp-process in neutrino-driven winds. Astrophys. J. 647, 1323–1340 (2006).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Fynbo, H. O. U. et al. Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances. Nature 433, 136–139 (2005).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Freer, M. & Fynbo, H. O. U. The Hoyle state in 12C. Prog. Part. Nucl. Phys. 78, 1–23 (2014).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Truran, J. W. & Kozlovsky, B. Z. The enhancement of the 3 4He → 12C reaction rate in dense matter by inelastic-scattering processes. Astrophys. J. 158, 1021–1032 (1969).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Beard, M., Austin, S. M. & Cyburt, R. Enhancement of the triple alpha rate in a hot dense medium. Phys. Rev. Lett. 119, 112701 (2017).

    ADS  Article  Google Scholar 

  • 10.

    Meyer, B. S., Mathews, G. J., Howard, W. M., Woosley, S. E. & Hoffman, R. D. r-process nucleosynthesis in the high-entropy supernova bubble. Astrophys. J. 399, 656–664 (1992).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Woosley, S. E. & Hoffman, R. D. The α-process and the r-process. Astrophys. J. 395, 202–239 (1992).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Hüdepohl, L., Müller, B., Janka, H. T., Marek, A. & Raffelt, G. G. Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104, 251101 (2010).

    ADS  Article  Google Scholar 

  • 13.

    Fischer, T., Whitehouse, S. C., Mezzacappa, A., Thielemann, F. K. & Liebendörfer, M. Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron. Astrophys. 517, A80 (2010).

    Article  Google Scholar 

  • 14.

    Rayet, M., Arnould, M. & Prantzos, N. The p-process revisited. Astron. Astrophys. 227, 271–281 (1990).

    ADS  CAS  Google Scholar 

  • 15.

    Travaglio, C. et al. Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys. J. 601, 864–884 (2004).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Montes, F. et al. Nucleosynthesis in the early Galaxy. Astrophys. J. 671, 1685–1695 (2007).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Qian, Y. Z. & Wasserburg, G. J. Abundances of Sr, Y, and Zr in metal-poor stars and implications for chemical evolution in the early Galaxy. Astrophys. J. 687, 272–286 (2008).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Hansen, C. J., Montes, F. & Arcones, A. How many nucleosynthesis processes exist at low metallicity? Astrophys. J. 797, 123 (2014).

    ADS  Article  Google Scholar 

  • 19.

    Eichler, M. et al. Nucleosynthesis in 2D core-collapse supernovae of 11.2 and 17.0 M progenitors: implications for Mo and Ru production. J. Phys. G 45, 014001 (2018).

    ADS  Article  Google Scholar 

  • 20.

    Bliss, J., Arcones, A. & Qian, Y. Z. Production of Mo and Ru isotopes in neutrino-driven winds: implications for solar abundances and presolar grains. Astrophys. J. 866, 105 (2018).

    ADS  Article  Google Scholar 

  • 21.

    Angulo, C. et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999).

    ADS  Article  Google Scholar 

  • 22.

    Arcones, A. & Thielemann, F.-K. Neutrino-driven wind simulations and nucleosynthesis of heavy elements. J. Phys. G 40, 013201 (2013).

    ADS  Article  Google Scholar 

  • 23.

    Hoffman, R. D., Woosley, S. E. & Qian, Y. Z. Nucleosynthesis in neutrino-driven winds. II. Implications for heavy element synthesis. Astrophys. J. 482, 951–962 (1997).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Wanajo, S., Müller, B., Janka, H.-T. & Heger, A. Nucleosynthesis in the innermost ejecta of neutrino-driven supernova explosions in two dimensions. Astrophys. J. 852, 40 (2018).

    ADS  Article  Google Scholar 

  • 25.

    Davids, C. N. & Bonner, T. Enhancement of the 3 4He → 12C reaction rate by inelastic proton scattering. Astrophys. J. 166, 405–410 (1971).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Freer, M., Horiuchi, H., Kanada-En’yo, Y., Lee, D. & Meißner, U.-G. Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 27.

    Zimmerman, W. R. et al. Unambiguous identification of the second 2+ state in 12C and the structure of the Hoyle state. Phys. Rev. Lett. 110, 152502 (2013).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Zimmerman, W. R. Direct Observation of the Second 2+ State in 12C. PhD thesis, Univ. of Connecticut (2013).

  • 29.

    Lippuner, J. & Roberts, L. SkyNet: a modular nuclear reaction network library. Astrophys. J. Suppl. Ser. 233, 18 (2017).

    ADS  Article  Google Scholar 

  • 30.

    Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron–positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000).

    ADS  Article  Google Scholar 

  • 31.

    Cyburt, R. H. et al. The JINA REACLIB database: its recent updates and impact on type-I X-ray bursts. Astrophys. J. 189, 240–252 (2010).

    CAS  Article  Google Scholar 

  • 32.

    Caughlan, G. R. & Fowler, W. A. Thermonuclear reaction rates V. At. Data Nucl. Data Tables 40, 283–334 (1988).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Arnold, C. W. et al. Cross-section measurement of 9Be(γ, n)8Be and implications for α + α + n9Be in the r process. Phys. Rev. C 85, 044605 (2012).

    ADS  Article  Google Scholar 

  • 34.

    Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. Astrophys. J. 869, 130 (2018).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Roberts, L. et al. The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers. Mon. Not. R. Astron. Soc. 464, 3907 (2017).

    ADS  CAS  Article  Google Scholar 

  • Let's block ads! (Why?)



    "triple" - Google News
    December 02, 2020 at 11:04PM
    https://ift.tt/2KPSAQX

    Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae - Nature.com
    "triple" - Google News
    https://ift.tt/3dc0blF
    https://ift.tt/2WoIFUS

    Bagikan Berita Ini

    0 Response to "Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae - Nature.com"

    Post a Comment

    Powered by Blogger.