Wanajo, S., Janka, H.-T. & Kubono, S. Uncertainties in the νp-process: supernova dynamics versus nuclear physics. Astrophys. J. 729, 46 (2011).
Nishimura, N. et al. Uncertainties in νp-process nucleosynthesis from Monte Carlo variation of reaction rates. Mon. Not. R. Astron. Soc. 489, 1379–1396 (2019).
Fröhlich, C. et al. Neutrino-induced nucleosynthesis of A > 64 nuclei: the νp process. Phys. Rev. Lett. 96, 142502 (2006).
Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H. T. & Buras, R. Nucleosynthesis in early supernova winds. II. The role of neutrinos. Astrophys. J. 644, 1028–1039 (2006).
Wanajo, S. The rp-process in neutrino-driven winds. Astrophys. J. 647, 1323–1340 (2006).
Fynbo, H. O. U. et al. Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances. Nature 433, 136–139 (2005).
Freer, M. & Fynbo, H. O. U. The Hoyle state in 12C. Prog. Part. Nucl. Phys. 78, 1–23 (2014).
Truran, J. W. & Kozlovsky, B. Z. The enhancement of the 3 4He → 12C reaction rate in dense matter by inelastic-scattering processes. Astrophys. J. 158, 1021–1032 (1969).
Beard, M., Austin, S. M. & Cyburt, R. Enhancement of the triple alpha rate in a hot dense medium. Phys. Rev. Lett. 119, 112701 (2017).
Meyer, B. S., Mathews, G. J., Howard, W. M., Woosley, S. E. & Hoffman, R. D. r-process nucleosynthesis in the high-entropy supernova bubble. Astrophys. J. 399, 656–664 (1992).
Woosley, S. E. & Hoffman, R. D. The α-process and the r-process. Astrophys. J. 395, 202–239 (1992).
Hüdepohl, L., Müller, B., Janka, H. T., Marek, A. & Raffelt, G. G. Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104, 251101 (2010).
Fischer, T., Whitehouse, S. C., Mezzacappa, A., Thielemann, F. K. & Liebendörfer, M. Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron. Astrophys. 517, A80 (2010).
Rayet, M., Arnould, M. & Prantzos, N. The p-process revisited. Astron. Astrophys. 227, 271–281 (1990).
Travaglio, C. et al. Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys. J. 601, 864–884 (2004).
Montes, F. et al. Nucleosynthesis in the early Galaxy. Astrophys. J. 671, 1685–1695 (2007).
Qian, Y. Z. & Wasserburg, G. J. Abundances of Sr, Y, and Zr in metal-poor stars and implications for chemical evolution in the early Galaxy. Astrophys. J. 687, 272–286 (2008).
Hansen, C. J., Montes, F. & Arcones, A. How many nucleosynthesis processes exist at low metallicity? Astrophys. J. 797, 123 (2014).
Eichler, M. et al. Nucleosynthesis in 2D core-collapse supernovae of 11.2 and 17.0 M☉ progenitors: implications for Mo and Ru production. J. Phys. G 45, 014001 (2018).
Bliss, J., Arcones, A. & Qian, Y. Z. Production of Mo and Ru isotopes in neutrino-driven winds: implications for solar abundances and presolar grains. Astrophys. J. 866, 105 (2018).
Angulo, C. et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999).
Arcones, A. & Thielemann, F.-K. Neutrino-driven wind simulations and nucleosynthesis of heavy elements. J. Phys. G 40, 013201 (2013).
Hoffman, R. D., Woosley, S. E. & Qian, Y. Z. Nucleosynthesis in neutrino-driven winds. II. Implications for heavy element synthesis. Astrophys. J. 482, 951–962 (1997).
Wanajo, S., Müller, B., Janka, H.-T. & Heger, A. Nucleosynthesis in the innermost ejecta of neutrino-driven supernova explosions in two dimensions. Astrophys. J. 852, 40 (2018).
Davids, C. N. & Bonner, T. Enhancement of the 3 4He → 12C reaction rate by inelastic proton scattering. Astrophys. J. 166, 405–410 (1971).
Freer, M., Horiuchi, H., Kanada-En’yo, Y., Lee, D. & Meißner, U.-G. Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018).
Zimmerman, W. R. et al. Unambiguous identification of the second 2+ state in 12C and the structure of the Hoyle state. Phys. Rev. Lett. 110, 152502 (2013).
Zimmerman, W. R. Direct Observation of the Second 2+ State in 12C. PhD thesis, Univ. of Connecticut (2013).
Lippuner, J. & Roberts, L. SkyNet: a modular nuclear reaction network library. Astrophys. J. Suppl. Ser. 233, 18 (2017).
Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron–positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000).
Cyburt, R. H. et al. The JINA REACLIB database: its recent updates and impact on type-I X-ray bursts. Astrophys. J. 189, 240–252 (2010).
Caughlan, G. R. & Fowler, W. A. Thermonuclear reaction rates V. At. Data Nucl. Data Tables 40, 283–334 (1988).
Arnold, C. W. et al. Cross-section measurement of 9Be(γ, n)8Be and implications for α + α + n → 9Be in the r process. Phys. Rev. C 85, 044605 (2012).
Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. Astrophys. J. 869, 130 (2018).
Roberts, L. et al. The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers. Mon. Not. R. Astron. Soc. 464, 3907 (2017).
"triple" - Google News
December 02, 2020 at 11:04PM
https://ift.tt/2KPSAQX
Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae - Nature.com
"triple" - Google News
https://ift.tt/3dc0blF
https://ift.tt/2WoIFUS
Bagikan Berita Ini
0 Response to "Enhanced triple-α reaction reduces proton-rich nucleosynthesis in supernovae - Nature.com"
Post a Comment